pycalphad.plot package¶
Subpackages¶
- pycalphad.plot.binary package
- Submodules
- pycalphad.plot.binary.compsets module
BinaryCompsetCompsetPairCompsetPair.compsetsCompsetPair.aCompsetPair.bCompsetPair.phasesCompsetPair.unique_phasesCompsetPair.compositionsCompsetPair.temperatureCompsetPair.same_phaseCompsetPair.mean_compositionCompsetPair.max_compositionCompsetPair.min_compositionCompsetPair.Tdiscrepancy()CompsetPair.pairwise_xdiscrepancy()CompsetPair.xdiscrepancy()CompsetPair.ydiscrepancy()CompsetPair.ydiscrepancy_max()
find_two_phase_region_compsets()get_compsets()
- pycalphad.plot.binary.map module
- pycalphad.plot.binary.plot module
- pycalphad.plot.binary.zpf_boundary_sets module
TwoPhaseRegionZPFBoundarySetsZPFBoundarySets.componentsZPFBoundarySets.indep_comp_condZPFBoundarySets.all_compsetsZPFBoundarySets.two_phase_regionsZPFBoundarySets.add_compsets()ZPFBoundarySets.get_line_plot_boundaries()ZPFBoundarySets.get_phases()ZPFBoundarySets.get_scatter_plot_boundaries()ZPFBoundarySets.rebuild_two_phase_regions()
- Module contents
Submodules¶
pycalphad.plot.eqplot module¶
The eqplot module contains functions for general plotting of the results of equilibrium calculations.
- pycalphad.plot.eqplot.eqplot(eq, ax=None, x=None, y=None, z=None, tielines=True, tieline_color=(0, 1, 0, 1), tie_triangle_color=(1, 0, 0, 1), legend_generator=<function phase_legend>, **kwargs)[source]¶
Plot the result of an equilibrium calculation.
The type of plot is controlled by the degrees of freedom in the equilibrium calculation.
- Parameters:
eq (xarray.Dataset) – Result of equilibrium calculation.
ax (matplotlib.Axes) – Default axes used if not specified.
x (StateVariable, optional)
y (StateVariable, optional)
z (StateVariable, optional)
tielines (bool) – If True, will plot tielines
tieline_color (color) – A valid matplotlib color, such as a named color string, hex RGB string, or a tuple of RGBA components to set the color of the two phase region tielines. The default is an RGBA tuple for green: (0, 1, 0, 1).
tie_triangle_color (color) – A valid matplotlib color, such as a named color string, hex RGB string, or a tuple of RGBA components to set the color of the two phase region tielines. The default is an RGBA tuple for red: (1, 0, 0, 1).
legend_generator (Callable) – A function that will be called with the list of phases and will return legend labels and colors for each phase. By default pycalphad.plot.utils.phase_legend is used
kwargs (kwargs) – Passed to matplotlib.pyplot.scatter.
- Return type:
matplotlib AxesSubplot
pycalphad.plot.ternary module¶
The ternary module enables plotting of ternary isobaric phase diagrams.
- pycalphad.plot.ternary.ternplot(dbf, comps, phases, conds, x=None, y=None, eq_kwargs=None, **plot_kwargs)[source]¶
Calculate the ternary isothermal, isobaric phase diagram. This function is a convenience wrapper around equilibrium() and eqplot().
- Parameters:
dbf (Database) – Thermodynamic database containing the relevant parameters.
comps (list) – Names of components to consider in the calculation.
phases (list) – Names of phases to consider in the calculation.
conds (dict) – Maps StateVariables to values and/or iterables of values. For ternplot only one changing composition and one potential coordinate each is supported.
x (v.MoleFraction) – instance of a pycalphad.variables.composition to plot on the x-axis. Must correspond to an independent condition.
y (v.MoleFraction) – instance of a pycalphad.variables.composition to plot on the y-axis. Must correspond to an independent condition.
eq_kwargs (optional) – Keyword arguments to equilibrium().
plot_kwargs (optional) – Keyword arguments to eqplot().
- Return type:
A phase diagram as a figure.
Examples
None yet.
pycalphad.plot.triangular module¶
Register a 'triangular' projection with matplotlib to plot diagrams on
triangular axes.
Users should not have to instantiate the TriangularAxes class directly. Instead, the projection name can be passed as a keyword argument to matplotlib.
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> plt.gca(projection='triangular')
>>> plt.scatter(np.random.random(10), np.random.random(10))
- class pycalphad.plot.triangular.TriangularAxes(*args, **kwargs)[source]¶
Bases:
AxesA custom class for triangular projections.
- clear()[source]¶
Hard-code axes limits to be on [0, 1] for both axes.
Warning: Limits not on [0, 1] may lead to clipping issues!
- drag_pan(button, key, x, y)[source]¶
Called when the mouse moves during a pan operation.
- Parameters:
button (.MouseButton) – The pressed mouse button.
key (str or None) – The pressed key, if any.
x (float) – The mouse coordinates in display coords.
y (float) – The mouse coordinates in display coords.
Notes
This is intended to be overridden by new projection types.
- end_pan()[source]¶
Called when a pan operation completes (when the mouse button is up.)
Notes
This is intended to be overridden by new projection types.
- get_xaxis_text1_transform(pad)[source]¶
- Returns:
transform (Transform) – The transform used for drawing x-axis labels, which will add pad_points of padding (in points) between the axis and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates
valign ({‘center’, ‘top’, ‘bottom’, ‘baseline’, ‘center_baseline’}) – The text vertical alignment.
halign ({‘center’, ‘left’, ‘right’}) – The text horizontal alignment.
Notes
This transformation is primarily used by the ~matplotlib.axis.Axis class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
- get_xaxis_text2_transform(pad)[source]¶
- Returns:
transform (Transform) – The transform used for drawing secondary x-axis labels, which will add pad_points of padding (in points) between the axis and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates
valign ({‘center’, ‘top’, ‘bottom’, ‘baseline’, ‘center_baseline’}) – The text vertical alignment.
halign ({‘center’, ‘left’, ‘right’}) – The text horizontal alignment.
Notes
This transformation is primarily used by the ~matplotlib.axis.Axis class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
- get_xaxis_transform(which='grid')[source]¶
Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data coordinates and the y-direction is in axis coordinates.
Note
This transformation is primarily used by the ~matplotlib.axis.Axis class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
- Parameters:
which ({'grid', 'tick1', 'tick2'})
- get_yaxis_text1_transform(pad)[source]¶
- Returns:
transform (Transform) – The transform used for drawing y-axis labels, which will add pad_points of padding (in points) between the axis and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates
valign ({‘center’, ‘top’, ‘bottom’, ‘baseline’, ‘center_baseline’}) – The text vertical alignment.
halign ({‘center’, ‘left’, ‘right’}) – The text horizontal alignment.
Notes
This transformation is primarily used by the ~matplotlib.axis.Axis class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
- get_yaxis_text2_transform(pad)[source]¶
- Returns:
transform (Transform) – The transform used for drawing secondart y-axis labels, which will add pad_points of padding (in points) between the axis and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates
valign ({‘center’, ‘top’, ‘bottom’, ‘baseline’, ‘center_baseline’}) – The text vertical alignment.
halign ({‘center’, ‘left’, ‘right’}) – The text horizontal alignment.
Notes
This transformation is primarily used by the ~matplotlib.axis.Axis class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
- get_yaxis_transform(which='grid')[source]¶
Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates.
Note
This transformation is primarily used by the ~matplotlib.axis.Axis class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations.
- Parameters:
which ({'grid', 'tick1', 'tick2'})
- name = 'triangular'¶
- set_ylabel(ylabel, fontdict=None, labelpad=None, *, loc=None, **kwargs)[source]¶
Set the label for the y-axis. Default rotation=60 degrees.
- Parameters:
ylabel (str) – The label text.
labelpad (float, default: None) – Spacing in points from the axes bounding box including ticks and tick labels.
loc ({‘bottom’, ‘center’, ‘top’}, default: yaxis.labellocation) – The label position. This is a high-level alternative for passing parameters y and horizontalalignment.
**kwargs (.Text properties) – .Text properties control the appearance of the label.
See also
textDocuments the properties supported by .Text.
- start_pan(x, y, button)[source]¶
Called when a pan operation has started.
- Parameters:
x (float) – The mouse coordinates in display coords.
y (float) – The mouse coordinates in display coords.
button (.MouseButton) – The pressed mouse button.
Notes
This is intended to be overridden by new projection types.
pycalphad.plot.utils module¶
The plot utils module contains some useful routines related to plotting.
- pycalphad.plot.utils.phase_legend(phases)[source]¶
Build matplotlib handles for the plot legend.
- Parameters:
phases (list) – Names of the phases.
- Returns:
A tuple containing
(1) A list of matplotlib handle objects
(2) A dict mapping phase names to their RGB color on the plot
Examples
>>> legend_handles, colors = phase_legend(['FCC_A1', 'BCC_A2', 'LIQUID'])