"""
The model module provides support for using a Database to perform
calculations under specified conditions.
"""
import copy
import warnings
from symengine import exp, log, Abs, Add, And, Float, Mul, Piecewise, Pow, S, sin, StrictGreaterThan, Symbol, zoo, oo
from tinydb import where
import pycalphad.variables as v
from pycalphad.core.errors import DofError
from pycalphad.core.constants import MIN_SITE_FRACTION
from pycalphad.core.utils import unpack_species, get_pure_elements, wrap_symbol
from pycalphad.io.tdb import get_supported_variables
import numpy as np
from collections import OrderedDict
try:
# needs Python 3.13+
from warnings import deprecated
except ImportError:
from typing_extensions import deprecated
# Maximum number of levels deep we check for symbols that are functions of
# other symbols
_MAX_PARAM_NESTING = 32
def _toop_filter(chemical_group_dict, symmetric_species, asymmetric_species):
"""
Return a function ``f(m)`` that returns ``True`` if m is symmetric with
the symmetric_species and asymmetric with the asymmetric_species.
I.e. returns True if "j" is the asymmetric (Toop-like) species in the i-j-m ternary
"""
def _f(species):
if species == symmetric_species:
return False
elif species == asymmetric_species:
return False
elif chemical_group_dict[species] == chemical_group_dict[symmetric_species] and chemical_group_dict[species] != chemical_group_dict[asymmetric_species]:
return True # This chemical group should be mixed
else:
return False
return _f
def _kohler_filter(chemical_group_dict, symmetric_species_1, symmetric_species_2):
"""
Return a function ``f(m)`` that returns ``True`` if m is symmetric with
the symmetric_species_1 and with symmetric_species_2.
"""
def _f(species):
if species == symmetric_species_1:
return False
elif species == symmetric_species_2:
return False
elif chemical_group_dict[species] == chemical_group_dict[symmetric_species_1] and chemical_group_dict[species] == chemical_group_dict[symmetric_species_2]:
return True # This chemical group should be mixed
else:
return False
return _f
[docs]
class ReferenceState():
"""
Define the phase and any fixed state variables as a reference state for a component.
Parameters
----------
Attributes
----------
fixed_statevars : dict
Dictionary of {StateVariable: value} that will be fixed, e.g. {v.T: 298.15, v.P: 101325}
phase_name : str
Name of phase
species : Species
pycalphad Species variable
"""
def __init__(self, species, reference_phase, fixed_statevars=None):
"""
Parameters
----------
species : str or Species
Species to define the reference state for. Only pure elements supported.
reference_phase : str
Name of phase
fixed_statevars : None, optional
Dictionary of {StateVariable: value} that will be fixed, e.g. {v.T: 298.15, v.P: 101325}
If None (the default), an empty dict will be created.
"""
if isinstance(species, v.Species):
self.species = species
else:
self.species = v.Species(species)
self.phase_name = reference_phase
self.fixed_statevars = fixed_statevars if fixed_statevars is not None else {}
def __repr__(self):
if len(self.fixed_statevars.keys()) > 0:
s = "ReferenceState('{}', '{}', {})".format(self.species.name, self.phase_name, self.fixed_statevars)
else:
s = "ReferenceState('{}', '{}')".format(self.species.name, self.phase_name)
return s
[docs]
class classproperty(object):
# https://stackoverflow.com/questions/5189699/how-to-make-a-class-property
def __init__(self, f):
self.f = f
def __get__(self, obj, owner):
return self.f(owner)
[docs]
class Model(object):
"""
Models use an abstract representation of the function
for calculation of values under specified conditions.
Parameters
----------
dbe : Database
Database containing the relevant parameters.
comps : list
Names of components to consider in the calculation.
phase_name : str
Name of phase model to build.
parameters : dict or list
Optional dictionary of parameters to be substituted in the model.
A list of parameters will cause those symbols to remain symbolic.
This will overwrite parameters specified in the database
Attributes
----------
constituents : List[Set[Species]]
A list of sublattices containing the sets of species on each sublattice.
Methods
-------
None yet.
Examples
--------
None yet.
Notes
-----
The two sublattice ionic liquid model has several special cases compared to
typical models within the compound energy formalism. A few key differences
arise. First, variable site ratios (modulated by vacancy site fractions)
are used to charge balance the phase. Second, endmembers for neutral
species and interactions among only neutral species should be specified
using only one sublattice (dropping the cation sublattice). For
understanding the special cases used throughout this class, users are
referred to:
Sundman, "Modification of the two-sublattice model for liquids",
Calphad 15(2) (1991) 109-119 https://doi.org/d3jppb
"""
# We only use the contributions attribute in build_phase.
# Users should not access it later since subclasses can override build_phase
# and make self.models inconsistent with contributions.
# Note that we include atomic ordering last since it uses self.models
# to figure out its contribution.
contributions = [('ref', 'reference_energy'), ('idmix', 'ideal_mixing_energy'),
('xsmix', 'excess_mixing_energy'), ('mag', 'magnetic_energy'),
('2st', 'twostate_energy'), ('ein', 'einstein_energy'),
('vol', 'volume_energy'), ('ord', 'atomic_ordering_energy')]
# Behave as if piecewise temperature bounds extend to +-inf (i.e., ignore lower/upper T limits for parameters)
# This follows the behavior of most commercial codes, but may be undesirable in some circumstances
# Designed to be readonly on instances, because mutation after initialization will not work
@classproperty
def extrapolate_temperature_bounds(cls):
return True
def __new__(cls, *args, **kwargs):
target_cls = cls._dispatch_on(*args, **kwargs)
instance = object.__new__(target_cls)
return instance
@classmethod
def _dispatch_on(cls, dbe, comps, phase_name, parameters=None):
phase = dbe.phases[phase_name.upper()]
target_cls = cls
if 'mqmqa' in phase.model_hints.keys():
from pycalphad.models.model_mqmqa import ModelMQMQA
target_cls = ModelMQMQA
return target_cls
def __getnewargs_ex__(self):
return ((self._dbe, self.components, self.phase_name,), {'parameters': self._parameters_arg})
def __init__(self, dbe, comps, phase_name, parameters=None):
self._dbe = dbe
self._endmember_reference_model = None
self.components = set()
self.constituents = []
self.phase_name = phase_name.upper()
phase = dbe.phases[self.phase_name]
self.site_ratios = list(phase.sublattices)
active_species = unpack_species(dbe, comps)
for idx, sublattice in enumerate(phase.constituents):
subl_comps = set(sublattice).intersection(active_species)
self.components |= subl_comps
# Support for variable site ratios in ionic liquid model
if phase.model_hints.get('ionic_liquid_2SL', False):
if idx == 0:
subl_idx = 1
elif idx == 1:
subl_idx = 0
else:
raise ValueError('Two-sublattice ionic liquid specified with more than two sublattices')
self.site_ratios[subl_idx] = Add(*[v.SiteFraction(self.phase_name, idx, spec) * abs(spec.charge) for spec in subl_comps])
if phase.model_hints.get('ionic_liquid_2SL', False):
# Special treatment of "neutral" vacancies in 2SL ionic liquid
# These are treated as having variable valence
for idx, sublattice in enumerate(phase.constituents):
subl_comps = set(sublattice).intersection(active_species)
if v.Species('VA') in subl_comps:
if idx == 0:
subl_idx = 1
elif idx == 1:
subl_idx = 0
else:
raise ValueError('Two-sublattice ionic liquid specified with more than two sublattices')
self.site_ratios[subl_idx] += self.site_ratios[idx] * v.SiteFraction(self.phase_name, idx, v.Species('VA'))
self.site_ratios = tuple(self.site_ratios)
# Verify that this phase is still possible to build
is_pure_VA = set()
for sublattice in phase.constituents:
sublattice_comps = set(sublattice).intersection(self.components)
if len(sublattice_comps) == 0:
# None of the components in a sublattice are active
# We cannot build a model of this phase
raise DofError(
'{0}: Sublattice {1} of {2} has no components in {3}' \
.format(self.phase_name, sublattice,
phase.constituents,
self.components))
is_pure_VA.add(sum(set(map(lambda s : getattr(s, 'number_of_atoms'),sublattice_comps))))
self.constituents.append(sublattice_comps)
if sum(is_pure_VA) == 0:
#The only possible component in a sublattice is vacancy
#We cannot build a model of this phase
raise DofError(
'{0}: Sublattices of {1} contains only VA (VACUUM) constituents' \
.format(self.phase_name, phase.constituents))
self.components = sorted(self.components)
desired_active_pure_elements = [list(x.constituents.keys()) for x in self.components]
desired_active_pure_elements = [el.upper() for constituents in desired_active_pure_elements
for el in constituents]
self.pure_elements = sorted(set(desired_active_pure_elements))
self.nonvacant_elements = [x for x in self.pure_elements if x != 'VA']
# Convert string symbol names to Symbol objects
# This makes xreplace work with the symbols dict
symbols = {Symbol(s): val for s, val in dbe.symbols.items()}
if parameters is not None:
self._parameters_arg = parameters
if isinstance(parameters, dict):
symbols.update([(wrap_symbol(s), val) for s, val in parameters.items()])
else:
# Lists of symbols that should remain symbolic
for s in parameters:
symbols.pop(wrap_symbol(s))
else:
self._parameters_arg = None
self._symbols = {wrap_symbol(key): value for key, value in symbols.items()}
self.models = OrderedDict()
self.build_phase(dbe)
for name, value in self.models.items():
# XXX: xreplace hack because SymEngine seems to let Symbols slip in somehow
self.models[name] = self.symbol_replace(value, symbols).xreplace(get_supported_variables())
self.site_fractions = sorted([x for x in self.variables if isinstance(x, v.SiteFraction)], key=str)
self.state_variables = sorted([x for x in self.variables if not isinstance(x, v.SiteFraction)], key=str)
[docs]
@classmethod
def unwrap_piecewise(cls, graph):
from pycalphad.io.tdb import to_interval
replace_dict = {}
for atom in graph.atoms(Piecewise):
args = atom.args
# Unwrap temperature-dependent piecewise with zero-defaults
if len(args) == 4 and args[2] == 0 and args[3] == True and args[1].free_symbols == {v.T}:
replace_dict[atom] = args[0]
elif cls.extrapolate_temperature_bounds:
# Set lower and upper temperature limits to -+infinity
# First filter out default zero-branches
filtered_args = [(x, cond) for x, cond in zip(*[iter(args)]*2) if not ((cond == S.true) and (x == S.Zero))]
if len(filtered_args) == 0:
continue
if not all([cond.free_symbols == {v.T} for _, cond in filtered_args]):
# Only temperature-dependent piecewise conditions are supported for extrapolation
continue
intervals = [to_interval(cond) for _, cond in filtered_args]
sortindices = [i[0] for i in sorted(enumerate(intervals), key=lambda x:x[1].args[0])]
if (intervals[sortindices[0]].args[0] == S.NegativeInfinity) and \
(intervals[sortindices[-1]].args[1] == S.Infinity):
# Nothing to do, temperature range already extrapolated
continue
# First branch is special-cased to negative infinity
exprcondpairs = [(filtered_args[sortindices[0]][0], v.T < intervals[sortindices[0]].args[1])]
for idx in sortindices[1:-1]:
exprcondpairs.append((filtered_args[sortindices[idx]][0],
And(v.T >= intervals[sortindices[idx]].args[0], v.T < intervals[sortindices[idx]].args[1])
))
# Last branch is special-cased to positive infinity
exprcondpairs.append((filtered_args[sortindices[-1]][0],
v.T >= intervals[sortindices[-1]].args[0]
))
# Catch-all branch required for LLVM (should never hit in this formulation)
exprcondpairs.append((0, True))
replace_dict[atom] = Piecewise(*exprcondpairs)
return graph.xreplace(replace_dict)
[docs]
@classmethod
def symbol_replace(cls, obj, symbols):
"""
Substitute values of symbols into 'obj'.
Parameters
----------
obj : SymEngine object
symbols : dict mapping symengine.Symbol to SymEngine object
Returns
-------
SymEngine object
"""
try:
# Need to do more substitutions to catch symbols that are functions
# of other symbols
for iteration in range(_MAX_PARAM_NESTING):
obj = obj.xreplace(symbols)
obj = cls.unwrap_piecewise(obj)
undefs = [x for x in obj.free_symbols if not isinstance(x, v.StateVariable)]
if len(undefs) == 0:
break
except AttributeError:
# Can't use xreplace on a float
pass
return obj
def __eq__(self, other):
if self is other:
return True
elif type(self) != type(other):
return False
else:
return self.__dict__ == other.__dict__
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(repr(self))
[docs]
def moles(self, species, per_formula_unit=False):
"Number of moles of species or elements."
species = v.Species(species)
is_pure_element = (len(species.constituents.keys()) == 1 and
list(species.constituents.keys())[0] == species.name)
result = S.Zero
normalization = S.Zero
if is_pure_element:
element = list(species.constituents.keys())[0]
for idx, sublattice in enumerate(self.constituents):
active = set(sublattice).intersection(self.components)
result += self.site_ratios[idx] * \
sum(int(spec.number_of_atoms > 0) * spec.constituents.get(element, 0) * v.SiteFraction(self.phase_name, idx, spec)
for spec in active)
normalization += self.site_ratios[idx] * \
sum(spec.number_of_atoms * v.SiteFraction(self.phase_name, idx, spec)
for spec in active)
else:
for idx, sublattice in enumerate(self.constituents):
active = set(sublattice).intersection({species})
if len(active) == 0:
continue
result += self.site_ratios[idx] * sum(v.SiteFraction(self.phase_name, idx, spec) for spec in active)
normalization += self.site_ratios[idx] * \
sum(int(spec.number_of_atoms > 0) * v.SiteFraction(self.phase_name, idx, spec)
for spec in active)
if not per_formula_unit:
return result / normalization
else:
return result
@property
def ast(self):
"Return the full abstract syntax tree of the model."
return Add(*list(self.models.values()))
@property
def variables(self):
"Return state variables in the model."
return sorted([x for x in self.ast.free_symbols if isinstance(x, v.StateVariable)], key=str)
@property
def degree_of_ordering(self):
result = S.Zero
site_ratio_normalization = S.Zero
# Calculate normalization factor
for idx, sublattice in enumerate(self.constituents):
active = set(sublattice).intersection(self.components)
subl_content = sum(int(spec.number_of_atoms > 0) * v.SiteFraction(self.phase_name, idx, spec) for spec in active)
site_ratio_normalization += self.site_ratios[idx] * subl_content
site_ratios = [c/site_ratio_normalization for c in self.site_ratios]
for comp in self.components:
if comp.number_of_atoms == 0:
continue
comp_result = S.Zero
for idx, sublattice in enumerate(self.constituents):
active = set(sublattice).intersection(set(self.components))
if comp in active:
comp_result += site_ratios[idx] * Abs(v.SiteFraction(self.phase_name, idx, comp) - self.moles(comp)) / self.moles(comp)
result += comp_result
return result / sum(int(spec.number_of_atoms > 0) for spec in self.components)
DOO = degree_of_ordering
# Can be defined as a list of pre-computed first derivatives
gradient = None
# Note: In order-disorder phases, TC will always be the *disordered* value of TC
curie_temperature = TC = S.Zero
beta = BMAG = S.Zero
neel_temperature = NT = S.Zero
#pylint: disable=C0103
# These are standard abbreviations from Thermo-Calc for these quantities
energy = GM = property(lambda self: self.ast)
formulaenergy = G = property(lambda self: self.ast * self._site_ratio_normalization)
entropy = SM = property(lambda self: -self.GM.diff(v.T))
enthalpy = HM = property(lambda self: self.GM - v.T*self.GM.diff(v.T))
formulaenthalpy = H = property(lambda self: self.G - v.T*self.G.diff(v.T))
heat_capacity = CPM = property(lambda self: -v.T*self.GM.diff(v.T, v.T))
#pylint: enable=C0103
mixing_energy = GM_MIX = property(lambda self: self.GM - self.endmember_reference_model.GM)
mixing_enthalpy = HM_MIX = property(lambda self: self.GM_MIX - v.T*self.GM_MIX.diff(v.T))
mixing_entropy = SM_MIX = property(lambda self: -self.GM_MIX.diff(v.T))
mixing_heat_capacity = CPM_MIX = property(lambda self: -v.T*self.GM_MIX.diff(v.T, v.T))
@property
def endmember_reference_model(self):
"""
Return a Model containing only energy contributions from endmembers.
Returns
-------
Model
Notes
-----
The endmember_reference_model is used for ``_MIX`` properties of Model objects.
It is defined such that subtracting it from the model will set the energy of the
endmembers to zero. The endmember_reference_model AST can be modified in the
same way as any Model.
Partitioned models have energetic contributions from the ordered compound
energies/interactions and the disordered compound energies/interactions.
The endmembers to choose as the reference is ambiguous. If the current model has
an ordered energy as part of a partitioned model, then the model energy
contributions are set to ``nan``.
The endmember reference model is built lazily and stored for later re-use
because it needs to copy the Database and instantiate a new Model.
"""
if self._endmember_reference_model is None:
endmember_only_dbe = copy.deepcopy(self._dbe)
endmember_only_dbe._parameters.remove(where('constituent_array').test(self._interaction_test))
mod_endmember_only = self.__class__(endmember_only_dbe, self.components, self.phase_name, parameters=self._parameters_arg)
# Ideal mixing contributions are always generated, so we need to set the
# contribution of the endmember reference model to zero to preserve ideal
# mixing in this model.
mod_endmember_only.models['idmix'] = 0
if self.models.get('ord', S.Zero) != S.Zero:
warnings.warn(
f"{self.phase_name} is a partitioned model with an ordering energy "
"contribution. The choice of endmembers for the endmember "
"reference model used by `_MIX` properties is ambiguous for "
"partitioned models. The `Model.set_reference_state` method is a "
"better choice for computing mixing energy. See "
"https://pycalphad.org/docs/latest/examples/ReferenceStateExamples.html "
"for an example."
)
for k in mod_endmember_only.models.keys():
mod_endmember_only.models[k] = float('nan')
self._endmember_reference_model = mod_endmember_only
return self._endmember_reference_model
[docs]
def get_internal_constraints(self):
constraints = []
# Site fraction balance
for idx, sublattice in enumerate(self.constituents):
constraints.append(sum(v.SiteFraction(self.phase_name, idx, spec) for spec in sublattice) - 1)
# Charge balance for all phases that are charged
has_charge = len({sp for sp in self.components if sp.charge != 0}) > 0
constant_site_ratios = True
# The only implementation with variable site ratios is the two-sublattice ionic liquid.
# This check is convenient for detecting 2SL ionic liquids without keeping other state.
# Because 2SL ionic liquids charge balance 'automatically', we do not need to enforce charge balance.
for sr in self.site_ratios:
try:
float(sr)
except (TypeError, RuntimeError):
constant_site_ratios = False
# For all other cases where charge is present, we do need to add charge balance.
if constant_site_ratios and has_charge:
total_charge = 0
for idx, (sublattice, site_ratio) in enumerate(zip(self.constituents, self.site_ratios)):
total_charge += sum(v.SiteFraction(self.phase_name, idx, spec) * spec.charge * site_ratio
for spec in sublattice)
constraints.append(total_charge)
return constraints
[docs]
def build_phase(self, dbe):
"""
Generate the symbolic form of all the contributions to this phase.
Parameters
----------
dbe : Database
"""
contrib_vals = list(OrderedDict(self.__class__.contributions).values())
if 'atomic_ordering_energy' in contrib_vals:
if contrib_vals.index('atomic_ordering_energy') != (len(contrib_vals) - 1):
# Check for a common mistake in custom models
# Users that need to override this behavior should override build_phase
raise ValueError('\'atomic_ordering_energy\' must be the final contribution')
self.models.clear()
for key, value in self.__class__.contributions:
self.models[key] = S(getattr(self, value)(dbe))
def _array_validity(self, constituent_array):
"""
Return True if the constituent_array contains only active species of the current Model instance.
"""
if len(constituent_array) != len(self.constituents):
# Allow an exception for the ionic liquid model, where neutral
# species can be specified in the anion sublattice without any
# species in the cation sublattice.
ionic_liquid_2SL = self._dbe.phases[self.phase_name].model_hints.get('ionic_liquid_2SL', False)
if ionic_liquid_2SL and len(constituent_array) == 1:
param_sublattice = constituent_array[0]
model_anion_sublattice = self.constituents[1]
if (set(param_sublattice).issubset(model_anion_sublattice) or (param_sublattice[0] == v.Species('*'))):
return True
return False
for param_sublattice, model_sublattice in zip(constituent_array, self.constituents):
if not (set(param_sublattice).issubset(model_sublattice) or (param_sublattice[0] == v.Species('*'))):
return False
return True
def _purity_test(self, constituent_array):
"""
Return True if the constituent_array is valid and has exactly one
species in every sublattice.
"""
if not self._array_validity(constituent_array):
return False
return not any(len(sublattice) != 1 for sublattice in constituent_array)
def _interaction_test(self, constituent_array):
"""
Return True if the constituent_array is valid and has more than one
species in at least one sublattice.
"""
if not self._array_validity(constituent_array):
return False
return any([len(sublattice) > 1 for sublattice in constituent_array])
@property
def _site_ratio_normalization(self):
"""
Calculates the normalization factor based on the number of sites
in each sublattice.
"""
site_ratio_normalization = S.Zero
# Calculate normalization factor
for idx, sublattice in enumerate(self.constituents):
active = set(sublattice).intersection(self.components)
subl_content = sum(spec.number_of_atoms * v.SiteFraction(self.phase_name, idx, spec) for spec in active)
site_ratio_normalization += self.site_ratios[idx] * subl_content
return site_ratio_normalization
@staticmethod
def _Muggianu_correction_dict(comps): #pylint: disable=C0103
"""
Replace y_i -> y_i + (1 - sum(y involved in parameter)) / m,
where m is the arity of the interaction parameter.
Returns a dict converting the list of Symbols (comps) to this.
m is assumed equal to the length of comps.
When incorporating binary, ternary or n-ary interaction parameters
into systems with more than n components, the sum of site fractions
involved in the interaction parameter may no longer be unity. This
breaks the symmetry of the parameter. The solution suggested by
Muggianu, 1975, is to renormalize the site fractions by replacing them
with a term that will sum to unity even in higher-order systems.
There are other solutions that involve retaining the asymmetry for
physical reasons, but this solution works well for components that
are physically similar.
This procedure is based on an analysis by Hillert, 1980,
published in the Calphad journal.
"""
arity = len(comps)
return_dict = {}
correction_term = (S.One - Add(*comps)) / arity
for comp in comps:
return_dict[comp] = comp + correction_term
return return_dict
def _Xi_ij(self, phase, sublattice_index, i, j):
# Species of the same chemical group may use a Kohler-type or
# Muggianu-type approximation (the choice does not affect this function).
# Species of different chemical groups use a Toop-type approximation.
toop_filter = _toop_filter(phase.model_hints['chemical_groups'], i, j)
toop_correction = S.Zero
active_subl_comps = phase.constituents[sublattice_index].intersection(self.components)
for k in filter(toop_filter, active_subl_comps):
toop_correction += v.Y(self.phase_name, sublattice_index, k)
return v.Y(self.phase_name, sublattice_index, i) + toop_correction
def _sigma_ij(self, phase, sublattice_index, i, j):
# Compute the correction for Kohler-type approximation between species i and j
# We don't yet have a way to flag whether the ij interaction, if the
# species are of the same chemical group (they are "symmetric", by
# Pelton) uses a Kohler-type or Muggianu-type approximation. Since
# there exists the _Muggianu_correction_dict already, we assume that
# callers of this function are only interested in a Kohler-type
# approximation for species of the same type. Species of different
# chemical groups use a Toop-type approximation.
kohler_filter = _kohler_filter(phase.model_hints['chemical_groups'], i, j)
kohler_correction = S.Zero
active_subl_comps = phase.constituents[sublattice_index].intersection(self.components)
for k in filter(kohler_filter, active_subl_comps):
kohler_correction += v.Y(self.phase_name, sublattice_index, k)
return 1 - kohler_correction
def _alpha_ij_Q(self, phase, sublattice_index, i, j, q_ij, exp_i, exp_j):
Xi_ij = self._Xi_ij(phase, sublattice_index, i, j)
Xi_ji = self._Xi_ij(phase, sublattice_index, j, i)
sigma_ij = self._sigma_ij(phase, sublattice_index, i, j) # same for both
i_term = (1 + (Xi_ij - Xi_ji) / sigma_ij) / 2
j_term = (1 + (Xi_ji - Xi_ij) / sigma_ij) / 2
return q_ij * i_term**exp_i * j_term**exp_j
def _alpha_ij_L(self, phase, sublattice_index, i, j, L_ij, parameter_order):
# Use the parameter-sorted order for i and j, noting that L_{ij} != L_{ji} for odd-ordered terms.
Xi_ij = self._Xi_ij(phase, sublattice_index, i, j)
Xi_ji = self._Xi_ij(phase, sublattice_index, j, i)
sigma_ij = self._sigma_ij(phase, sublattice_index, i, j)
mixing_term = (Xi_ij - Xi_ji) / sigma_ij
return L_ij * mixing_term**parameter_order
[docs]
def kohler_toop_excess_sum(self, dbe):
phase = dbe.phases[self.phase_name]
param_query = (
(where("phase_name") == phase.name) &
(where("parameter_type") == "QKT") &
(where('constituent_array').test(self._array_validity))
)
param_search = dbe.search
params = param_search(param_query)
kohler_toop_xs = S.Zero
for param in params:
mixing_term = S.One
for subl_idx, subl_comps in enumerate(param["constituent_array"]):
mixing_term *= Mul(*[v.SiteFraction(phase.name, subl_idx, comp) for comp in subl_comps])
if len(subl_comps) == 2:
# Note: The structure of exponents (a `List[int]`) currently assumes only one sublattice has mixing
assert len(subl_comps) == len(param["exponents"])
i, j = subl_comps
p, q = param["exponents"]
alpha_ij_Q = self._alpha_ij_Q(phase, subl_idx, i, j, param["parameter"], p, q)
mixing_term *= alpha_ij_Q
elif len(subl_comps) == 3:
# Pelton's 2001 paper lays out several different flavors of
# ternary parameters, but the simple flavor of ternary
# parameters (Pelton 2001 Eq. 17) seems to be used in the
# Quasichemical Kohler-Toop model implemented in DAT files.
# Note: The structure of exponents (a `List[int]`) currently assumes only one sublattice has mixing
exponents = param["exponents"]
assert len(subl_comps) == len(exponents)
mixing_term *= Mul(*[v.SiteFraction(phase.name, subl_idx, comp)**expn for comp, expn in zip(subl_comps, exponents)])
# Note, the following normalization is not in the paper
# either, but the equation in the paper clearly states that
# this type of "simple" ternary is discouraged and doesn't
# talk about how to extrapolate into multi-component.
mixing_term /= Add(*[v.SiteFraction(phase.name, subl_idx, comp) for comp in subl_comps])**(sum(exponents))
mixing_term *= param["parameter"]
else:
raise ValueError(f"Unsupported number of components are mixing, got {len(subl_comps)} ({subl_comps}), expected 2 or 3.")
kohler_toop_xs += mixing_term
return kohler_toop_xs
[docs]
def redlich_kister_sum(self, phase, param_search, param_query):
"""
Construct parameter in Redlich-Kister polynomial basis, using
the Muggianu ternary parameter extension.
"""
rk_terms = []
# search for desired parameters
params = param_search(param_query)
for param in params:
# iterate over every sublattice
mixing_term = S.One
for subl_index, comps in enumerate(param['constituent_array']):
comp_symbols = None
# convert strings to symbols
if comps[0] == v.Species('*'):
# Handle wildcards in constituent array
comp_symbols = \
[
v.SiteFraction(phase.name, subl_index, comp)
for comp in sorted(set(phase.constituents[subl_index])\
.intersection(self.components))
]
mixing_term *= Add(*comp_symbols)
else:
if (
phase.model_hints.get('ionic_liquid_2SL', False) and # This is an ionic 2SL
len(param['constituent_array']) == 1 and # There's only one sublattice
all(const.charge == 0 for const in param['constituent_array'][0]) # All constituents are neutral
):
# The constituent array is all neutral anion species in what would be the
# second sublattice. TDB syntax allows for specifying neutral species with
# one sublattice model. Set the sublattice index to 1 for the purpose of
# site fractions.
subl_index = 1
comp_symbols = \
[
v.SiteFraction(phase.name, subl_index, comp)
for comp in comps
]
if phase.model_hints.get('ionic_liquid_2SL', False): # This is an ionic 2SL
# We need to special case sorting for this model, because the constituents
# should not be alphabetically sorted. The model should be (C)(A, Va, B)
# for cations (C), anions (A), vacancies (Va) and neutrals (B). Thus the
# second sublattice should be sorted by species with charge, then by
# vacancies, if present, then by neutrals. Hint: in Thermo-Calc, using
# `set-start-constitution` for a phase will prompt you to enter site
# fractions for species in the order they are sorted internally within
# Thermo-Calc. This can be used to verify sorting behavior.
# Assume that the constituent array is already in sorted order
# alphabetically, so we need to rearrange the species first by charged
# species, then VA, then netural species. Since the cation sublattice
# should only have charged species by definition, this is equivalent to
# a no-op for the first sublattice.
charged_symbols = [sitefrac for sitefrac in comp_symbols if sitefrac.species.charge != 0 and sitefrac.species.number_of_atoms > 0]
va_symbols = [sitefrac for sitefrac in comp_symbols if sitefrac.species == v.Species('VA')]
neutral_symbols = [sitefrac for sitefrac in comp_symbols if sitefrac.species.charge == 0 and sitefrac.species.number_of_atoms > 0]
comp_symbols = charged_symbols + va_symbols + neutral_symbols
mixing_term *= Mul(*comp_symbols)
# is this a higher-order interaction parameter?
if len(comps) == 2 and param['parameter_order'] > 0:
# interacting sublattice, add the interaction polynomial
mixing_term *= Pow(comp_symbols[0] - \
comp_symbols[1], param['parameter_order'])
if len(comps) == 3:
# 'parameter_order' is an index to a variable when
# we are in the ternary interaction parameter case
# NOTE: The commercial software packages seem to have
# a "feature" where, if only the zeroth
# parameter_order term of a ternary parameter is specified,
# the other two terms are automatically generated in order
# to make the parameter symmetric.
# In other words, specifying only this parameter:
# PARAMETER G(FCC_A1,AL,CR,NI;0) 298.15 +30300; 6000 N !
# Actually implies:
# PARAMETER G(FCC_A1,AL,CR,NI;0) 298.15 +30300; 6000 N !
# PARAMETER G(FCC_A1,AL,CR,NI;1) 298.15 +30300; 6000 N !
# PARAMETER G(FCC_A1,AL,CR,NI;2) 298.15 +30300; 6000 N !
#
# If either 1 or 2 is specified, no implicit parameters are
# generated.
# We need to handle this case.
if param['parameter_order'] == 0:
# are _any_ of the other parameter_orders specified?
ternary_param_query = (
(where('phase_name') == param['phase_name']) & \
(where('parameter_type') == \
param['parameter_type']) & \
(where('constituent_array') == \
param['constituent_array'])
)
other_tern_params = param_search(ternary_param_query)
if len(other_tern_params) == 1 and \
other_tern_params[0] == param:
# only the current parameter is specified
# We need to generate the other two parameters.
order_one = copy.copy(param)
order_one['parameter_order'] = 1
order_two = copy.copy(param)
order_two['parameter_order'] = 2
# Add these parameters to our iteration.
params.extend((order_one, order_two))
# Include variable indicated by parameter order index
# Perform Muggianu adjustment to site fractions
mixing_term *= comp_symbols[param['parameter_order']].subs(
self._Muggianu_correction_dict(comp_symbols))
if phase.model_hints.get('ionic_liquid_2SL', False):
# Special normalization rules for parameters apply under this model
# If there are no anions present in the anion sublattice (only VA and neutral
# species), then the energy has an additional Q*y(VA) term
anions_present = any([m.species.charge < 0 for m in mixing_term.free_symbols])
if not anions_present:
pair_rule = {}
# Cation site fractions must always appear with vacancy site fractions
va_subls = [(v.Species('VA') in phase.constituents[idx]) for idx in range(len(phase.constituents))]
# The last index that contains a vacancy
va_subl_idx = (len(phase.constituents) - 1) - va_subls[::-1].index(True)
va_present = any((v.Species('VA') in c) for c in param['constituent_array'])
if va_present and (max(len(c) for c in param['constituent_array']) == 1):
# No need to apply pair rule for VA-containing endmember
pass
elif va_subl_idx > -1:
for sym in mixing_term.free_symbols:
if sym.species.charge > 0:
pair_rule[sym] = sym * v.SiteFraction(sym.phase_name, va_subl_idx, v.Species('VA'))
mixing_term = mixing_term.xreplace(pair_rule)
# This parameter is normalized differently due to the variable charge valence of vacancies
mixing_term *= self.site_ratios[va_subl_idx]
param_val = param['parameter']
if isinstance(param_val, Piecewise):
# Eliminate redundant Piecewise and extrapolate beyond temperature limits
filtered_args = [expr for expr, cond in zip(*[iter(param_val.args)]*2) if not ((cond == S.true) and (expr == S.Zero))]
if len(filtered_args) == 1:
param_val = filtered_args[0]
rk_terms.append(mixing_term * param_val)
return Add(*rk_terms)
[docs]
def reference_energy(self, dbe):
"""
Returns the weighted average of the endmember energies
in symbolic form.
"""
pure_param_query = (
(where('phase_name') == self.phase_name) & \
(where('parameter_order') == 0) & \
(where('parameter_type') == "G") & \
(where('constituent_array').test(self._purity_test))
)
phase = dbe.phases[self.phase_name]
param_search = dbe.search
pure_energy_term = self.redlich_kister_sum(phase, param_search,
pure_param_query)
return pure_energy_term / self._site_ratio_normalization
[docs]
def ideal_mixing_energy(self, dbe):
#pylint: disable=W0613
"""
Returns the ideal mixing energy in symbolic form.
"""
phase = dbe.phases[self.phase_name]
site_ratios = self.site_ratios
ideal_mixing_term = S.Zero
sitefrac_limit = Float(MIN_SITE_FRACTION/10.)
for subl_index, sublattice in enumerate(phase.constituents):
active_comps = set(sublattice).intersection(self.components)
ratio = site_ratios[subl_index]
for comp in active_comps:
sitefrac = \
v.SiteFraction(phase.name, subl_index, comp)
# We lose some precision here, but this makes the limit behave nicely
# We're okay until fractions of about 1e-12 (platform-dependent)
mixing_term = Piecewise((sitefrac*log(sitefrac),
StrictGreaterThan(sitefrac, sitefrac_limit)), (0, True),
)
ideal_mixing_term += (mixing_term*ratio)
ideal_mixing_term *= (v.R * v.T)
return ideal_mixing_term / self._site_ratio_normalization
[docs]
def excess_mixing_energy(self, dbe):
"""
Build the binary, ternary and higher order interaction term
Here we use Redlich-Kister polynomial basis by default
Here we use the Muggianu ternary extension by default
Replace y_i -> y_i + (1 - sum(y involved in parameter)) / m,
where m is the arity of the interaction parameter
"""
phase = dbe.phases[self.phase_name]
param_search = dbe.search
param_query = (
(where('phase_name') == self.phase_name) & \
((where('parameter_type') == 'G') |
(where('parameter_type') == 'L')) & \
(where('constituent_array').test(self._interaction_test))
)
excess_term = self.redlich_kister_sum(phase, param_search, param_query)
excess_term += self.kohler_toop_excess_sum(dbe)
return excess_term / self._site_ratio_normalization
[docs]
def magnetic_energy(self, dbe):
#pylint: disable=C0103, R0914
"""
Return the energy from magnetic ordering in symbolic form.
The implemented model is the Inden-Hillert-Jarl formulation.
The approach follows from the background of W. Xiong et al, Calphad, 2012.
"""
phase = dbe.phases[self.phase_name]
param_search = dbe.search
self.TC = self.curie_temperature = S.Zero
self.BMAG = self.beta = S.Zero
if 'ihj_magnetic_structure_factor' not in phase.model_hints:
return S.Zero
if 'ihj_magnetic_afm_factor' not in phase.model_hints:
return S.Zero
site_ratio_normalization = self._site_ratio_normalization
# define basic variables
afm_factor = phase.model_hints['ihj_magnetic_afm_factor']
if afm_factor == 0:
# Apply improved magnetic model which does not use AFM / Weiss factor
return self.xiong_magnetic_energy(dbe)
bm_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'BMAGN') & \
(where('constituent_array').test(self._array_validity))
)
tc_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'TC') & \
(where('constituent_array').test(self._array_validity))
)
mean_magnetic_moment = \
self.redlich_kister_sum(phase, param_search, bm_param_query)
beta = mean_magnetic_moment / Piecewise(
(afm_factor, mean_magnetic_moment <= 0),
(1., True)
)
self.BMAG = self.beta = self.symbol_replace(beta, self._symbols)
curie_temp = \
self.redlich_kister_sum(phase, param_search, tc_param_query)
tc = curie_temp / Piecewise(
(afm_factor, curie_temp <= 0),
(1., True)
)
self.TC = self.curie_temperature = self.symbol_replace(tc, self._symbols)
# Used to prevent singularity
tau_positive_tc = v.T / (curie_temp + 1e-9)
tau_negative_tc = v.T / ((curie_temp/afm_factor) + 1e-9)
# define model parameters
p = phase.model_hints['ihj_magnetic_structure_factor']
A = 518/1125 + (11692/15975)*(1/p - 1)
# factor when tau < 1 and tc < 0
sub_tau_neg_tc = 1 - (1/A) * ((79/(140*p))*(tau_negative_tc**(-1)) + (474/497)*(1/p - 1) \
* ((tau_negative_tc**3)/6 + (tau_negative_tc**9)/135 + (tau_negative_tc**15)/600)
)
# factor when tau < 1 and tc > 0
sub_tau_pos_tc = 1 - (1/A) * ((79/(140*p))*(tau_positive_tc**(-1)) + (474/497)*(1/p - 1) \
* ((tau_positive_tc**3)/6 + (tau_positive_tc**9)/135 + (tau_positive_tc**15)/600)
)
# factor when tau >= 1 and tc > 0
super_tau_pos_tc = -(1/A) * ((tau_positive_tc**-5)/10 + (tau_positive_tc**-15)/315 + (tau_positive_tc**-25)/1500)
# factor when tau >= 1 and tc < 0
super_tau_neg_tc = -(1/A) * ((tau_negative_tc**-5)/10 + (tau_negative_tc**-15)/315 + (tau_negative_tc**-25)/1500)
# This is an optimization to reduce the complexity of the compile-time expression
expr_cond_pairs = [(sub_tau_neg_tc, curie_temp/afm_factor > v.T),
(sub_tau_pos_tc, curie_temp > v.T),
(super_tau_pos_tc, And(curie_temp < v.T, curie_temp > 0)),
(super_tau_neg_tc, And(curie_temp/afm_factor < v.T, curie_temp < 0)),
(0, True)
]
g_term = Piecewise(*expr_cond_pairs)
return v.R * v.T * log(beta+1) * \
g_term / site_ratio_normalization
[docs]
def xiong_magnetic_energy(self, dbe):
"""
Return the energy from magnetic ordering in symbolic form.
The approach follows W. Xiong et al, Calphad, 2012.
"""
phase = dbe.phases[self.phase_name]
param_search = dbe.search
self.TC = self.curie_temperature = S.Zero
if 'ihj_magnetic_structure_factor' not in phase.model_hints:
return S.Zero
if 'ihj_magnetic_afm_factor' not in phase.model_hints:
return S.Zero
site_ratio_normalization = self._site_ratio_normalization
# define basic variables
afm_factor = phase.model_hints['ihj_magnetic_afm_factor']
if afm_factor != 0:
raise ValueError('Xiong model called with nonzero AFM / Weiss factor')
nt_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'NT') & \
(where('constituent_array').test(self._array_validity))
)
bm_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'BMAGN') & \
(where('constituent_array').test(self._array_validity))
)
tc_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'TC') & \
(where('constituent_array').test(self._array_validity))
)
mean_magnetic_moment = \
self.redlich_kister_sum(phase, param_search, bm_param_query)
beta = mean_magnetic_moment
curie_temp = \
self.redlich_kister_sum(phase, param_search, tc_param_query)
neel_temp = \
self.redlich_kister_sum(phase, param_search, nt_param_query)
self.TC = self.curie_temperature = self.symbol_replace(curie_temp, self._symbols)
self.NT = self.neel_temperature = self.symbol_replace(neel_temp, self._symbols)
self.BMAG = self.beta = self.symbol_replace(beta, self._symbols)
tau_curie = v.T / curie_temp
tau_curie = tau_curie.xreplace({zoo: 1.0e10})
tau_neel = v.T / neel_temp
tau_neel = tau_neel.xreplace({zoo: 1.0e10})
# define model parameters
p = phase.model_hints['ihj_magnetic_structure_factor']
D = 0.33471979 + 0.49649686*(1/p - 1)
sub_tau_curie = 1 - (1/D) * ((0.38438376/p)*(tau_curie**(-1)) + 0.63570895*(1/p - 1) \
* ((tau_curie**3)/6 + (tau_curie**9)/135 + (tau_curie**15)/600) + (tau_curie**21)/1617
)
sub_tau_neel = 1 - (1/D) * ((0.38438376/p)*(tau_neel**(-1)) + 0.63570895*(1/p - 1) \
* ((tau_neel**3)/6 + (tau_neel**9)/135 + (tau_neel**15)/600) + (tau_neel**21)/1617
)
super_tau_curie = -(1/D) * ((tau_curie**-7)/21 + (tau_curie**-21)/630 + (tau_curie**-35)/2975 + (tau_curie**-49)/8232)
super_tau_neel = -(1/D) * ((tau_neel**-7)/21 + (tau_neel**-21)/630 + (tau_neel**-35)/2975 + (tau_neel**-49)/8232)
expr_cond_pairs_curie = [(0, tau_curie <= 0),
(super_tau_curie, tau_curie > 1),
(sub_tau_curie, True)
]
expr_cond_pairs_neel = [(0, tau_neel <= 0),
(super_tau_neel, tau_neel > 1),
(sub_tau_neel, True)
]
g_term = Piecewise(*expr_cond_pairs_curie) + Piecewise(*expr_cond_pairs_neel)
return v.R * v.T * log(beta+1) * \
g_term / site_ratio_normalization
[docs]
def twostate_energy(self, dbe):
"""
Return the energy from liquid-amorphous two-state model.
"""
phase = dbe.phases[self.phase_name]
param_search = dbe.search
site_ratio_normalization = self._site_ratio_normalization
gd_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'GD') & \
(where('constituent_array').test(self._array_validity))
)
gd = self.redlich_kister_sum(phase, param_search, gd_param_query)
if gd == S.Zero:
return S.Zero
return -v.R * v.T * log(1 + exp(-gd / (v.R * v.T))) / site_ratio_normalization
[docs]
def einstein_energy(self, dbe):
"""
Return the energy based on the Einstein model.
Note that THETA parameters are actually LN(THETA).
All Redlich-Kister summation is done in log-space,
then exp() is called on the result.
"""
phase = dbe.phases[self.phase_name]
param_search = dbe.search
theta_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'THETA') & \
(where('constituent_array').test(self._array_validity))
)
lntheta = self.redlich_kister_sum(phase, param_search, theta_param_query)
theta = exp(lntheta)
if lntheta != 0:
result = 1.5*v.R*theta + 3*v.R*v.T*log(1-exp(-theta/v.T))
else:
result = 0
return result / self._site_ratio_normalization
@staticmethod
def _quasi_mole_fraction(species_name, phase_name, constituent_array,
site_ratios,
substitutional_sublattice_idxs,
):
"""
Return an abstract syntax tree of the quasi mole fraction of the
given species as a function of this phases's constituent site fractions.
These mole fractions are "quasi" mole fractions because
1. Vacancies are treated as regular species - they have mole fractions
defined and the site fraction of vacancies are not used to normalize
the mole fractions of the real constituents by the 1 - y_{VA} factor.
2. The mole fractions are only computed over the sublattices that
participate in the ordering/disordering. Species in non-ordering
("interstitial") sublattices do not contribute to the mole fractions
that replace the site fractions.
These constraints ensures that the ordering energy goes to zero when the
substitutional sublattice is disordered, regardless of the occupancy of
the interstitial sublattice.
"""
# Normalize site ratios
site_ratio_normalization = 0
numerator = S.Zero
for idx, sublattice in enumerate(constituent_array):
# only count species from substitutional sublattices
if idx not in substitutional_sublattice_idxs:
continue
if species_name in list(sublattice):
site_ratio_normalization += site_ratios[idx]
numerator += site_ratios[idx] * \
v.SiteFraction(phase_name, idx, species_name)
if site_ratio_normalization == 0 and species_name.name == 'VA':
return 1
if site_ratio_normalization == 0:
raise ValueError(
f'Couldn\'t find {species_name} in a substitutional sublattice '
f'(indices: {substitutional_sublattice_idxs}) '
f'of the constituents {constituent_array}'
)
return numerator / site_ratio_normalization
@staticmethod
def _partitioned_expr(disord_expr, ord_expr, disordered_mole_fraction_dict, ordered_mole_fraction_dict):
"""Return the expression from adding the disordered part and ordering part
Given expressions E^{dis}(y^{dis}_i) and E^{ord}(y^{ord}_i), return:
E^{dis}(x^{ord}_i) + (E^{ord}(y^{ord}_i) - E^{ord}(y^{ord}_i = x^{ord}_i))
where:
* y^{dis}_i are the site fractions of the disordered phase
* y^{ord}_i are the site fractions of the ordered phase
* x^{ord}_i are the quasi mole fractions of the ordered phase (in terms
of the ordered phase site fractions)
"""
disord_expr = disord_expr.xreplace(disordered_mole_fraction_dict)
ordering_expr = ord_expr - ord_expr.xreplace(ordered_mole_fraction_dict)
return disord_expr + ordering_expr
[docs]
def atomic_ordering_energy(self, dbe):
r"""
Return the atomic ordering contribution in symbolic form.
If the current phase is anything other than the ordered phase in a
paritioned order/disorder Gibbs energy model, this method will return
zero. If the current phase is the ordered phase, ordering energy is
computed by equation (18) of Connetable *et al.* [1]_:
:math:`\Delta G^\mathrm{ord}(y_i) = G^\mathrm{ord}(y_i) - G^\mathrm{ord}(y_i = x_i)`
This method must be the last energy contribution called because it plays
several roles that require all other contributions to be defined:
1. The current AST in self.models represents the ordered energy
:math:`G^\mathrm{ord}(y_i)`. To compute the ordering energy, all
contributions to the ordered energy must have already been counted.
2. The true energy of the phase should be the sum of the disordered
phase's energy and the ordering energy. That is,
:math:`G = G^\mathrm{dis} + \Delta G^\mathrm{ord}(y_i)`. This method
not only computes the ordering energy, but also replaces the other
model contributions by the disordered phase's energy.
3. Physical properties are partitioned in the same way as the
energy. See Section 5.8.6 of Lukas, Fries and Sundman [2]_.
Notes
-----
.. caution::
This method overwrites the ``self.models`` dictionary with the model
contributions for the disordered phase.
This method assumes that the first sublattice of the disordered phase is
the substitutional sublattice and all other sublattices are
interstitial. In the ordered phase, all sublattices with constituents
that match the disordered substitutional sublattice will be treated as
disordered (with site fractions replaced by quasi mole fractions in the
ordered sublattices) and the interstitial sublattices will not have any
site fractions substituted.
References
----------
.. [1] Connetable et al., Calphad 2008, 32 (2), 361–370. doi: 10.1016/j.calphad.2008.01.002
.. [2] Lukas, Fries, and Sundman, Computational Thermodynamics: the Calphad Method, Cambridge University Press (2007).
"""
phase = dbe.phases[self.phase_name]
ordered_phase_name = phase.model_hints.get('ordered_phase', None)
disordered_phase_name = phase.model_hints.get('disordered_phase', None)
if phase.name != ordered_phase_name:
return S.Zero
ordered_phase = dbe.phases[ordered_phase_name]
constituents = [sorted(set(c).intersection(self.components)) for c in ordered_phase.constituents]
disordered_phase = dbe.phases[disordered_phase_name]
disordered_model = self.__class__(dbe, sorted(self.components), disordered_phase_name)
# Get substitutional sublattice indices (for the ordered phase) and
# validate that the number of interstitial sublattices is consistent
# with the disordered phase.
# Assumes first sublattice of the disordered phase is the sublattice
# that can be come ordered:
disordered_subl_constituents = disordered_phase.constituents[0]
ordered_constituents = ordered_phase.constituents
substitutional_sublattice_idxs = []
for idx, subl_constituents in enumerate(ordered_constituents):
# Assumes that the ordered phase sublattice describes the ordering
# if it has exactly the same constituents. Could be a source of
# false positives if any interstitial sublattices have the same
# constituents as the disordered sublattice, but there's not an
# explicit way to specify which sublattices are ordering. We try to
# compensate for this assumption by validating (next).
if len(disordered_subl_constituents.symmetric_difference(subl_constituents)) == 0:
substitutional_sublattice_idxs.append(idx)
# validate
num_substitutional_sublattice_idxs = len(substitutional_sublattice_idxs)
num_ordered_interstitial_subls = len(ordered_phase.sublattices) - num_substitutional_sublattice_idxs
num_disordered_interstitial_subls = len(disordered_phase.sublattices) - 1
if num_ordered_interstitial_subls != num_disordered_interstitial_subls:
import textwrap
raise ValueError(
textwrap.dedent(
f"""
Number of interstitial sublattices for the disordered phase
{disordered_phase_name} ({num_disordered_interstitial_subls})
and the ordered phase {ordered_phase_name}
({num_ordered_interstitial_subls}) do not match. Found substitutional
sublattices in the ordered phase with indices of
{substitutional_sublattice_idxs}. Ensure that all the constituents in
the substitutional sublattices for the disordered and ordered phase
match exactly and the constituents in the interstitial sublattices for
the disordered and ordered phase match exactly.
"""
).replace("\n", ""))
# We also validate that no physical properties have ordered
# contributions because the underlying physical property needs to
# paritioned and substituted for the physical property in the disordered
# expression. This can be safely removed when partitioned
# physical properties are correctly substituted into the disordered
# energy.
for contrib, value in self.models.items():
# To handle ordering in user-defined subclasses, we assume that all properties
# that are not reference, ideal, or excess are physical contributions.
if contrib in ('ref', 'idmix', 'xsmix'):
continue
if value != S.Zero:
warnings.warn(
f"The order-disorder model for \"{self.phase_name}\" has a contribution from "
f"the physical property model `{dict(self.contributions)[contrib]}`. "
f"Partitioned physical properties are not correctly substituted into the "
f"disordered part of the energy. THE GIBBS ENERGY CALCULATED FOR THIS PHASE "
f"MAY BE INCORRECT. Please see the discussion in "
f"https://github.com/pycalphad/pycalphad/pull/311 for more details."
)
# Save all of the ordered energy contributions
# Needs to extract a copy of self.models.values because the values will
# be updated to the disordered energy contributions later
ordered_energy = Add(*list(self.models.values()))
# Compute the molefraction_dict, which will map ordered phase site
# fractions to the quasi mole fractions representing the disordered state
molefraction_dict = {}
ordered_sitefracs = [x for x in ordered_energy.free_symbols if isinstance(x, v.SiteFraction)]
for sitefrac in ordered_sitefracs:
if sitefrac.sublattice_index in substitutional_sublattice_idxs:
molefraction_dict[sitefrac] = \
self._quasi_mole_fraction(sitefrac.species,
ordered_phase_name,
constituents,
ordered_phase.sublattices,
substitutional_sublattice_idxs,
)
# Compute the variable_rename_dict, which will map disordered phase site
# fractions to the quasi mole fractions representing the disordered state
variable_rename_dict = {}
disordered_sitefracs = [x for x in disordered_model.energy.free_symbols if isinstance(x, v.SiteFraction)]
for atom in disordered_sitefracs:
if atom.sublattice_index == 0: # only the first sublattice is substitutional
variable_rename_dict[atom] = \
self._quasi_mole_fraction(atom.species,
ordered_phase_name,
constituents,
ordered_phase.sublattices,
substitutional_sublattice_idxs,
)
else:
shifted_subl_index = atom.sublattice_index + num_substitutional_sublattice_idxs - 1
variable_rename_dict[atom] = \
v.SiteFraction(ordered_phase_name, shifted_subl_index, atom.species)
# 1: Compute the ordering energy
# Step 2 will put the disordered parts into the correct model
# contributions. There's no technical reason for doing it this way
# compared to setting the AST to the _partitioned_expr for the total
# energy - this is more for bookkeeping of the model contributions.
ordering_energy = self._partitioned_expr(S.Zero, ordered_energy, {}, molefraction_dict)
# 2: Replace the ordered energy contributions with the disordered contributions
self.models.clear()
for name, value in disordered_model.models.items():
self.models[name] = value.xreplace(variable_rename_dict)
# 3: Handle physical properties, these also are contributed to by the
# disordered phase *and* an "ordering" contribution. For now, we only
# handle the magnetic parameters, since the other parameters are not
# stored as properties (e.g. Einstein THETA).
# TODO: Note that these do not affect the Gibbs energy expression!
# The disordered model's energetic contribution from physical
# properties needs to use the partitioned property in the disordered
# energy contribution. This is not possible at the time of writing.
self.TC = self.curie_temperature = self._partitioned_expr(disordered_model.TC, self.TC, variable_rename_dict, molefraction_dict)
self.BMAG = self.beta = self._partitioned_expr(disordered_model.BMAG, self.BMAG, variable_rename_dict, molefraction_dict)
self.NT = self.neel_temperature = self._partitioned_expr(disordered_model.NT, self.NT, variable_rename_dict, molefraction_dict)
return ordering_energy
[docs]
@deprecated("shift_reference_state is deprecated. Use `pycalphad.property_framework.ReferenceState` instead.")
def shift_reference_state(self, reference_states, dbe, contrib_mods=None, output=('GM', 'HM', 'SM', 'CPM'), fmt_str="{}R"):
"""
Add new attributes for calculating properties w.r.t. an arbitrary pure element reference state.
Parameters
----------
reference_states : Iterable of pycalphad.model.ReferenceState
Pure element ReferenceState objects. Must include all the pure
elements defined in the current model.
dbe : Database
Database containing the relevant parameters.
output : Iterable, optional
Parameters to subtract the ReferenceState from, defaults to ('GM', 'HM', 'SM', 'CPM').
contrib_mods : Mapping, optional
Map of {model contribution: new value}. Used to adjust the pure
reference model contributions at the time this is called, since
the `models` attribute of the pure element references are
effectively static after calling this method.
fmt_str : str, optional
String that will be formatted with the `output` parameter name.
Defaults to "{}R", e.g. the transformation of 'GM' -> 'GMR'
"""
# Error checking
# We ignore the case that the ref states are overspecified (same ref states can be used in different models w/ different active pure elements)
model_pure_elements = set(get_pure_elements(dbe, self.components))
refstate_pure_elements_list = get_pure_elements(dbe, [r.species for r in reference_states])
refstate_pure_elements = set(refstate_pure_elements_list)
if len(refstate_pure_elements_list) != len(refstate_pure_elements):
raise DofError("Multiple ReferenceState objects exist for at least one pure element: {}".format(refstate_pure_elements_list))
if not refstate_pure_elements.issuperset(model_pure_elements):
raise DofError("Non-existent ReferenceState for pure components {} in {} for {}".format(model_pure_elements.difference(refstate_pure_elements), self, self.phase_name))
contrib_mods = contrib_mods or {}
def _pure_element_test(constituent_array):
all_comps = set()
for sublattice in constituent_array:
if len(sublattice) != 1:
return False
all_comps.add(sublattice[0].name)
pure_els = all_comps.intersection(model_pure_elements)
return len(pure_els) == 1
# Remove interactions from a copy of the Database, avoids any element/VA interactions.
endmember_only_dbe = copy.deepcopy(dbe)
endmember_only_dbe._parameters.remove(~where('constituent_array').test(_pure_element_test))
reference_dict = {out: [] for out in output} # output: terms list
for ref_state in reference_states:
if ref_state.species not in self.components:
continue
mod_pure = self.__class__(endmember_only_dbe, [ref_state.species, v.Species('VA')], ref_state.phase_name, parameters=self._parameters_arg)
# apply the modifications to the Models
for contrib, new_val in contrib_mods.items():
mod_pure.models[contrib] = new_val
# set all the free site fractions to one, this should effectively delete any mixing terms spuriously added, e.g. idmix
site_frac_subs = {sf: 1 for sf in mod_pure.ast.free_symbols if isinstance(sf, v.SiteFraction)}
for mod_key, mod_val in mod_pure.models.items():
mod_pure.models[mod_key] = self.symbol_replace(mod_val, site_frac_subs)
moles = self.moles(ref_state.species)
# get the output property of interest, substitute the fixed state variables (e.g. T=298.15) and add the pure element moles weighted term to the list of terms
# substitution of fixed state variables has to happen after getting the attribute in case there are any derivatives involving that state variable
for out in reference_dict.keys():
mod_out = self.symbol_replace(getattr(mod_pure, out), ref_state.fixed_statevars)
reference_dict[out].append(mod_out*moles)
# set the attribute on the class
for out, terms in reference_dict.items():
reference_contrib = Add(*terms)
referenced_value = getattr(self, out) - reference_contrib
setattr(self, fmt_str.format(out), referenced_value)
[docs]
def volume_energy(self, dbe):
"""
Return the volumetric contribution in symbolic form. Follows the approach by Lu, Selleby, and Sundman [1].
Parameters
----------
dbe : Database
Database containing the relevant parameters.
Notes
-----
The high-pressure portion of the model is not currently implemented.
The parameters needed for it are queried from the database; however, calculations
are reserved for future implementation.
References
----------
[1] Lu, Selleby, and Sundman, Calphad, Vol. 29, No. 1, 2005, doi:10.1016/j.calphad.2005.04.001.
"""
phase = dbe.phases[self.phase_name]
param_search = dbe.search
V0_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'V0') & \
(where('constituent_array').test(self._array_validity))
)
VA_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'VA') & \
(where('constituent_array').test(self._array_validity))
)
VK_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'VK') & \
(where('constituent_array').test(self._array_validity))
)
VC_param_query = (
(where('phase_name') == phase.name) & \
(where('parameter_type') == 'VC') & \
(where('constituent_array').test(self._array_validity))
)
# V0 is given in databases per mole of formula, so we should normalize it
self.V0 = V0 = self.symbol_replace(self.redlich_kister_sum(phase, param_search, V0_param_query) / self._site_ratio_normalization, self._symbols)
# VA is given in databases per mole of atoms, so we should not normalize it
self.VA = VA = self.symbol_replace(self.redlich_kister_sum(phase, param_search, VA_param_query), self._symbols)
# TODO: unsure about the normalization of VK and VC parameters
self.VK = VK = self.symbol_replace(self.redlich_kister_sum(phase, param_search, VK_param_query), self._symbols)
self.VC = VC = self.symbol_replace(self.redlich_kister_sum(phase, param_search, VC_param_query), self._symbols)
# nonmagnetic contribution to volume
V_p0 = V0*exp(VA)
# magnetic contribution to volume
G_mag = self.models.get('mag')
V_mag = G_mag.diff(v.P)
self.VM = self.molar_volume = V_p0 + V_mag
volume_energy = S.Zero
if VK == 0:
volume_energy = V_p0*(v.P-101325)
else:
warnings.warn(
f"The database for \"{self.phase_name}\" contains a term for the isothermal compressibility"
f"however the pressure dependence has not been fully incorporated into the molar volume or"
f"Gibbs free energy models. THE GIBBS ENERGY AND MOLAR VOLUME CALCULATIONS MAY BE INCORRECT.")
return volume_energy
[docs]
class TestModel(Model):
"""
Test Model object for global minimization.
Equation 15.2 in:
P.M. Pardalos, H.E. Romeijn (Eds.), Handbook of Global Optimization,
vol. 2. Kluwer Academic Publishers, Boston/Dordrecht/London (2002)
Parameters
----------
dbf : Database
Ignored by TestModel but retained for API compatibility.
comps : sequence
Names of components to consider in the calculation.
phase : str
Name of phase model to build.
solution : sequence, optional
Float array locating the true minimum. Same length as 'comps'.
If not specified, randomly generated and saved to self.solution
Methods
-------
None yet.
Examples
--------
None yet.
"""
def __init__(self, dbf, comps, phase, solution=None, kmax=None):
self.components = set(comps)
if 'VA' in self.components:
raise ValueError('Vacancies are unsupported in TestModel')
self.models = dict()
variables = [v.SiteFraction(phase.upper(), 0, x) for x in sorted(self.components)]
if solution is None:
solution = np.random.dirichlet(np.ones_like(variables, dtype=np.int_))
self.solution = dict(list(zip(variables, solution)))
kmax = kmax if kmax is not None else 2
scale_factor = 1e4 * len(self.components)
ampl_scale = 1e3 * np.ones(kmax, dtype=np.float64)
freq_scale = 10 * np.ones(kmax, dtype=np.float64)
polys = Add(*[ampl_scale[i] * sin(freq_scale[i] * Add(*[Add(*[(varname - sol)**(j+1)
for varname, sol in self.solution.items()])
for j in range(kmax)]))**2
for i in range(kmax)])
self.models['test'] = scale_factor * Add(*[(varname - sol)**2 for varname, sol in self.solution.items()]) + polys