Source code for pycalphad.core.utils

The utils module handles helper routines for equilibrium calculation.
import warnings

import pycalphad.variables as v
from pycalphad.core.halton import halton
from pycalphad.core.constants import MIN_SITE_FRACTION
from sympy.utilities.lambdify import lambdify
from sympy import Symbol
import numpy as np
import operator
import functools
import itertools
import collections
from import Iterable, Mapping

[docs]def point_sample(comp_count, pdof=10): """ Sample 'pdof * (sum(comp_count) - len(comp_count))' points in composition space for the sublattice configuration specified by 'comp_count'. Points are sampled quasi-randomly from a Halton sequence. A Halton sequence is like a uniform random distribution, but the result will always be the same for a given 'comp_count' and 'pdof'. Note: For systems with only one component, only one point will be returned, regardless of 'pdof'. This is because the degrees of freedom are zero for that case. Parameters ---------- comp_count : list Number of components in each sublattice. pdof : int Number of points to sample per degree of freedom. Returns ------- ndarray of generated points satisfying the mass balance. Examples -------- >>> comps = [8,1] # 8 components in sublattice 1; only 1 in sublattice 2 >>> pts = point_sample(comps, pdof=20) # 7 d.o.f, returns a 140x7 ndarray """ # Generate Halton sequence with appropriate dimensions and size pts = halton(sum(comp_count), pdof * (sum(comp_count) - len(comp_count)), scramble=True) # Convert low-discrepancy sequence to normalized exponential # This will be uniformly distributed over the simplices pts = -np.log(pts) cur_idx = 0 for ctx in comp_count: end_idx = cur_idx + ctx pts[:, cur_idx:end_idx] /= pts[:, cur_idx:end_idx].sum(axis=1)[:, None] cur_idx = end_idx if len(pts) == 0: pts = np.atleast_2d([1] * len(comp_count)) return pts
[docs]def make_callable(model, variables, mode=None): """ Take a SymPy object and create a callable function. Parameters ---------- model, SymPy object Abstract representation of function variables, list Input variables, ordered in the way the return function will expect mode, ['numpy', 'numba', 'sympy'], optional Method to use when 'compiling' the function. SymPy mode is slow and should only be used for debugging. If Numba is installed, it can offer speed-ups when calling the energy function many times on multi-core CPUs. Returns ------- Function that takes arguments in the same order as 'variables' and returns the energy according to 'model'. Examples -------- None yet. """ energy = None if mode is None: mode = 'numpy' if mode == 'sympy': energy = lambda *vs: model.subs(zip(variables, vs)).evalf() else: energy = lambdify(tuple(variables), model, dummify=True, modules=mode) return energy
[docs]def sizeof_fmt(num, suffix='B'): """ Human-readable string for a number of bytes. """ for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']: if abs(num) < 1000.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1000.0 return "%.1f%s%s" % (num, 'Y', suffix)
[docs]def unpack_condition(tup): """ Convert a condition to a list of values. Notes ----- Rules for keys of conditions dicts: (1) If it's numeric, treat as a point value (2) If it's a tuple with one element, treat as a point value (3) If it's a tuple with two elements, treat as lower/upper limits and guess a step size. (4) If it's a tuple with three elements, treat as lower/upper/step (5) If it's a list, ndarray or other non-tuple ordered iterable, use those values directly. """ if isinstance(tup, tuple): if len(tup) == 1: return [float(tup[0])] elif len(tup) == 2: return np.arange(tup[0], tup[1], dtype=np.float_) elif len(tup) == 3: return np.arange(tup[0], tup[1], tup[2], dtype=np.float_) else: raise ValueError('Condition tuple is length {}'.format(len(tup))) elif isinstance(tup, Iterable): return [float(x) for x in tup] else: return [float(tup)]
[docs]def unpack_phases(phases): "Convert a phases list/dict into a sorted list." active_phases = None if isinstance(phases, (list, tuple, set)): active_phases = sorted(phases) elif isinstance(phases, dict): active_phases = sorted(phases.keys()) elif type(phases) is str: active_phases = [phases] return active_phases
[docs]def generate_dof(phase, active_comps): """ Accept a Phase object and a set() of the active components. Return a tuple of variable names and the sublattice degrees of freedom. """ msg = "generate_dof is deprecated and will be removed in a future version " msg += "of pycalphad. The correct way to determine the degrees of freedom " msg += "of a particular 'active' phase is to use Model.constituents." warnings.warn(msg, FutureWarning) variables = [] sublattice_dof = [] for idx, sublattice in enumerate(phase.constituents): dof = 0 for component in sorted(set(sublattice).intersection(active_comps)): variables.append(v.SiteFraction(, idx, component)) dof += 1 sublattice_dof.append(dof) return variables, sublattice_dof
[docs]def endmember_matrix(dof, vacancy_indices=None): """ Accept the number of components in each sublattice. Return a matrix corresponding to the compositions of all endmembers. Parameters ---------- dof : list of int Number of components in each sublattice. vacancy_indices, list of list of int, optional If vacancies are present in every sublattice, specify their indices in each sublattice to ensure the "pure vacancy" endmembers are excluded. Examples -------- Sublattice configuration like: `(AL, NI, VA):(AL, NI, VA):(VA)` >>> endmember_matrix([3,3,1], vacancy_indices=[[2], [2], [0]]) """ total_endmembers = functools.reduce(operator.mul, dof, 1) res_matrix = np.empty((total_endmembers, sum(dof)), dtype=np.float_) dof_arrays = [np.eye(d).tolist() for d in dof] row_idx = 0 for row in itertools.product(*dof_arrays): res_matrix[row_idx, :] = np.concatenate(row, axis=0) row_idx += 1 if vacancy_indices is not None and len(vacancy_indices) == len(dof): dof_adj = np.array([sum(dof[0:i]) for i in range(len(dof))]) for vacancy_em in itertools.product(*vacancy_indices): indices = np.array(vacancy_em) + dof_adj row_idx_to_delete = np.where(np.all(res_matrix[:, indices] == 1, axis=1)) res_matrix = np.delete(res_matrix, (row_idx_to_delete), axis=0) # Adjust site fractions to the numerical limit cur_idx = 0 res_matrix[res_matrix == 0] = MIN_SITE_FRACTION for ctx in dof: end_idx = cur_idx + ctx res_matrix[:, cur_idx:end_idx] /= res_matrix[:, cur_idx:end_idx].sum(axis=1)[:, None] cur_idx = end_idx return res_matrix
[docs]def unpack_kwarg(kwarg_obj, default_arg=None): """ Keyword arguments in pycalphad can be passed as a constant value, a dict of phase names and values, or a list containing both of these. If the latter, then the dict is checked first; if the phase of interest is not there, then the constant value is used. This function is a way to construct defaultdicts out of keyword arguments. Parameters ---------- kwarg_obj : dict, iterable, or None Argument to unpack into a defaultdict default_arg : object Default value to use if iterable isn't specified Returns ------- defaultdict for the keyword argument of interest Examples -------- >>> test_func = lambda **kwargs: print(unpack_kwarg('opt')) >>> test_func(opt=100) >>> test_func(opt={'FCC_A1': 50, 'BCC_B2': 10}) >>> test_func(opt=[{'FCC_A1': 30}, 200]) >>> test_func() >>> test_func2 = lambda **kwargs: print(unpack_kwarg('opt', default_arg=1)) >>> test_func2() """ new_dict = collections.defaultdict(lambda: default_arg) if isinstance(kwarg_obj, Mapping): new_dict.update(kwarg_obj) # kwarg_obj is a list containing a dict and a default # For now at least, we don't treat ndarrays the same as other iterables # ndarrays are assumed to be numeric arrays containing "default values", so don't match here elif isinstance(kwarg_obj, Iterable) and not isinstance(kwarg_obj, np.ndarray): for element in kwarg_obj: if isinstance(element, Mapping): new_dict.update(element) else: # element=element syntax to silence var-from-loop warning new_dict = collections.defaultdict( lambda element=element: element, new_dict) elif kwarg_obj is None: pass else: new_dict = collections.defaultdict(lambda: kwarg_obj) return new_dict
[docs]def unpack_components(dbf, comps): """ Parameters ---------- dbf : Database Thermodynamic database containing elements and species. comps : list Names of components to consider in the calculation. Returns ------- set Set of Species objects """ # Constrain possible components to those within phase's d.o.f # Assume for the moment that comps contains a list of pure element strings # We want to add all the species which can be created by a combination of # the user-specified pure elements species_dict = { s for s in dbf.species} possible_comps = {v.Species(species_dict.get(x, x)) for x in comps} desired_active_pure_elements = [list(x.constituents.keys()) for x in possible_comps] # Flatten nested list desired_active_pure_elements = [el.upper() for constituents in desired_active_pure_elements for el in constituents] eligible_species_from_database = {x for x in dbf.species if set(x.constituents.keys()).issubset(desired_active_pure_elements)} return eligible_species_from_database
[docs]def get_pure_elements(dbf, comps): """ Return a list of pure elements in the system. Parameters ---------- dbf : Database A Database object comps : list A list of component names (species and pure elements) Returns ------- list A list of pure elements in the Database """ comps = sorted(unpack_components(dbf, comps)) components = [x for x in comps] desired_active_pure_elements = [list(x.constituents.keys()) for x in components] desired_active_pure_elements = [el.upper() for constituents in desired_active_pure_elements for el in constituents] pure_elements = sorted(set([x for x in desired_active_pure_elements if x != 'VA'])) return pure_elements
[docs]def filter_phases(dbf, comps, candidate_phases=None): """Return phases that are valid for equilibrium calculations for the given database and components Filters out phases that * Have no active components in any sublattice of a phase * Are disordered phases in an order-disorder model Parameters ---------- dbf : Database Thermodynamic database containing the relevant parameters. comps : list of v.Species Species to consider in the calculation. candidate_phases : list Names of phases to consider in the calculation, if not passed all phases from DBF will be considered Returns ------- list Sorted list of phases that are valid for the Database and components """ # TODO: filter phases that can not charge balance def all_sublattices_active(comps, phase): active_sublattices = [len(set(comps).intersection(subl)) > 0 for subl in phase.constituents] return all(active_sublattices) if candidate_phases == None: candidate_phases = dbf.phases.keys() else: candidate_phases = set(candidate_phases).intersection(dbf.phases.keys()) disordered_phases = [dbf.phases[phase].model_hints.get('disordered_phase') for phase in candidate_phases] phases = [phase for phase in candidate_phases if all_sublattices_active(comps, dbf.phases[phase]) and (phase not in disordered_phases or (phase in disordered_phases and dbf.phases[phase].model_hints.get('ordered_phase') not in candidate_phases))] return sorted(phases)
[docs]def extract_parameters(parameters): """ Extract symbols and values from parameters. Parameters ---------- parameters : dict Dictionary of parameters Returns ------- tuple Tuple of parameter symbols (list) and parameter values (parameter_array_length, # parameters) """ parameter_array_lengths = set(np.atleast_1d(val).size for val in parameters.values()) if len(parameter_array_lengths) > 1: raise ValueError('parameters kwarg does not contain arrays of equal length') if len(parameters) > 0: param_symbols, param_values = zip(*[(wrap_symbol(key), val) for key, val in sorted(parameters.items(), key=operator.itemgetter(0))]) param_values = np.atleast_2d(np.ascontiguousarray(np.asarray(param_values, dtype=np.float64).T)) else: param_symbols = [] param_values = np.empty(0) return param_symbols, param_values
[docs]def instantiate_models(dbf, comps, phases, model=None, parameters=None, symbols_only=True): """ Parameters ---------- dbf : Database Database used to construct the Model instances. comps : Iterable Names of components to consider in the calculation. phases : Iterable Names of phases to consider in the calculation. model : Model class, a dict of phase names to Model, or a Iterable of both Model class to use for each phase. parameters : dict, optional Maps SymPy Symbol to numbers, for overriding the values of parameters in the Database. symbols_only : bool If True, symbols will be extracted from the parameters dict and used to construct the Model instances. Returns ------- dict Dictionary of Model instances corresponding to the passed phases. """ from pycalphad import Model # avoid cyclic imports parameters = parameters if parameters is not None else {} if symbols_only: parameters, _ = extract_parameters(parameters) if isinstance(model, Model): # Check that this instance is compatible with phases if len(phases) > 1: raise ValueError("Cannot instantiate models for multiple phases ({}) using a Model instance ({}, phase: {})".format(phases, model, model.phase_name)) else: if phases[0] != model.phase_name: raise ValueError("Cannot instantiate models because the desired {} phase does not match the Model instance () {} phase.".format(phases[0], model.phase_name, model)) models_defaultdict = unpack_kwarg(model, Model) models_dict = {} for name in phases: mod = models_defaultdict[name] if isinstance(mod, type): models_dict[name] = mod(dbf, comps, name, parameters=parameters) else: models_dict[name] = mod return models_dict
[docs]def get_state_variables(models=None, conds=None): """ Return a set of StateVariables defined Model instances and/or conditions. Parameters ---------- models : dict, optional Dictionary mapping phase names to instances of Model objects conds : Iterable[v.StateVariable] An iterable of StateVariables or a dictionary mapping pycalphad StateVariables to values Returns ------- set State variables that are defined in the models and or conditions. Examples -------- >>> from pycalphad import variables as v >>> from pycalphad.core.utils import get_state_variables >>> get_state_variables(conds={v.P: 101325, v.N: 1, v.X('AL'): 0.2}) == {v.P, v.N, v.T} True """ state_vars = set() if models is not None: for mod in models.values(): state_vars.update(mod.state_variables) if conds is not None: for c in conds: # StateVariable instances are ok (e.g. P, T, N, V, S), # however, subclasses (X, Y, MU, NP) are not ok. if type(c) is v.StateVariable: state_vars.add(c) return state_vars
[docs]def wrap_symbol(obj): if isinstance(obj, Symbol): return obj else: return Symbol(obj)
[docs]def wrap_symbol_symengine(obj): from symengine import Symbol, sympify from sympy import Symbol as Symbol_sympy if isinstance(obj, Symbol): return obj elif isinstance(obj, Symbol_sympy): return sympify(obj) else: return Symbol(obj)